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ABSTRACT 

 

 

Ion contaminants from Printed Circuit Board (PCB) assembly processes pose a 

high reliability risk because they result in damaged circuits. Therefore, it is essential to 

understand the level of ionic species  on the electronic circuitry as well as the reliability 

risks caused by these contaminants. There are a number of approaches available in the 

industry to assess the reliability risks ; for example, the water drop test (WDT) is one of 

the techniques used to determine the propensity of an ionic contaminant to  cause 

electrical short failures by dendrite formation. The objective of this research is to 

determine the time to cause the failures, known as electrochemical migration (ECM) 

failures. A test vehicle was developed for the WDT  to obtain the time to cause ECM 

failure in presence of different anions. The time to form dendritic bridges that cause short 

circuits  was determined as a function of the different anions and the spacings between 

PCB pads. The experimental method involved dispensing aqueous solutions containing 

common inorganic and organic acid anions onto test vehicles, applying electrical bias 

voltages and  measuring the time to form dendrites. Specially designed test structures 

cells were created to contain  the test solutions. At each of the test cells, a cavity held the 

solution and constant current was applied  through different metal geometries. To be 

representative of popular board finishes, test vehicle boards incorporated both Sn-Pb Hot 

Air Soldering Level (HASL) and Pb free HASL surface finishes. 
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CHAPTER 1: INTRODUCTION 

 

 

The trend towards electronic component densification and miniaturization 

demands a steadily decreasing PCB pad spacing (Harsanyi, 1995) (D.Q. Yu et al, 2006) 

in Surface Mount Technology (SMT) assemblies. In order for these assembly systems to 

continue to work reliably in the field, they must survive an environment with heat, 

moisture and electrical bias. It is observed that the occurrence of resistive shorts in the 

electronic circuitry that cause field failures varies under different physical, chemical, 

electrical, environmental and electrochemical and design conditions. One of the 

phenomena that cause shorts in electronic circuits on the PCB assemblies is 

electrochemical migration (ECM). This can be defined as a movement of metal ion 

through an electrolytic solution under an applied electric field between adjacent 

conductors (Harsanyi, 1995). ECM occurs on or in almost all electronic packages and 

assemblies via dendritic growth. Ultimately, dendrite growth reduces the gap between 

two adjacent metal stripes that leads to the current leakage and intermittent shorts and 

consequently increases the chance of catastrophic failure (Noh et al, 2008).  

A number of reports have been published about the methods for investigating the 

ECM behavior of a sample (O. Devos, C. Gabrielli, L. Beitone, C. Mace, E. Ostermann, 

H. Perrot, 2007), (W. Jud Ready, Laura J. Turbini, Roger Nickel, and John Fischer, 

1999), (Harsanyi, 1995). Furthermore, much research has been done in comparing and 

testing the effectiveness of cleaning systems for post soldered PCBA such as ROSE, 
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C3/IC and SIR (Kong Hui Lee, Rob Jukna, Jim Altpeter, Kantesh Doss, 2011), (Pravin 

Sequeira et al, 2010). The most common test method employed to study ECM is the 

water drop test which is performed by dispensing a drop of deionized water between 

adjacent PCB pads or traces (IPC TM650, 2.6.1) and applying an electrical bias.  

It is a challenge to achieve repeatable results in water drop test if it is performed 

on typical PCBs owing to interference from other lines and traces and the inability to 

maintain consistent volume of the water. The first step in this study was to design and 

fabricate a test vehicle with known cell geometry. The second step is to determine the 

value of concentrations of anions that would cause ECM short. Ultimately, the goal for 

this study was to determine the time to electrochemical failures by ECM for known 

conductor spacing, anion concentrations. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

Electronic equipment is a combination of electronic components connected 

electrically to produce a certain designed function. In the early days of electronic 

industry, electronic equipment were constructed by soldering and hand wiring. Therefore, 

the equipment was bulky, large, awkward, and unlikely to meet the demands of small 

equipment required in aerospace, health sector, and home's applications. 

A natural evolution took place in many fields in around 1950s (Stearns, 1996). To 

decrease the time between unit failure and repair due to easy replaceability, the smaller 

components were developed. The use of miniaturization in electronic equipment design 

created a new technology that is popular known as the printed circuit board.  

 There are many advantages in using a PCB instead of other interconnection and 

mounting techniques. The most important reason is that the size of component assembly 

is reduced with corresponding decrease in weight. Thus, a higher quantity of production 

can be achieved at lower cost. Besides, PCBs also ensure a high level of repeatability, 

offer uniformity of electrical characteristic, and eliminate the probability of 

manufacturing errors (Strauss, 1994). 

 On the other hand, the miniaturization creates several issues. One of the problems 

is the electrochemical migration on components that leads to short in the electronic 

circuitry. (Harsanyi, 1995). Furthermore, the boards can be contaminated easily while be 

handled  (Hymes, 1991). 
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 There are many variables that make it difficult to understand the specifies nature 

of the electrochemical failure mode. However, five majors factors are the construction of 

printed circuit boards, the metals used in the board assemblies, process materials such as 

flux and its removal, the soldering process and electrochemistry. 

2.1 Printed Circuit Board 

  Printed circuit boards are formed by a thin layer of conducting material (e.g. Cu) 

deposited, or "printed," on the surface of an insulating board known as the substrate. Four 

different PCB constructions are single side, double side, multilayer, and flexible boards. 

Single side boards have components only on one side of the laminate material. When 

more components are required, double side is used. In the third type, multilayer boards, 

the components are mounted on both sides of the insulating material with additional 

conductor layers in between the top and bottom layers. Typical constructions vary 

between three and as high as thirty-two layers. 

 

Figure 1: Cross section of multilayers board (Lawson, 2007) 

1 
2 

3 

4 

5 

6 

7 

8 
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 Figure 1 presents a cross section of multi-layer board showing alternate layers of 

copper and dielectric layers (FR4 laminate). The final type, the flexible board is normally 

made up of three-layers of material: a base dielectric layer, a central conductor layer and 

top dielectric layer (Stearns, 1996). These are typically used in digital cameras, medical 

field or application where high density is required. 

 To connect components on the PCB, new packaging technologies have been 

developed. There are four popular technologies (figure 2) to attach components to the 

boards: plated through-hole (PTH), leaded SMT, leadless SMT, and ball grid array 

(BGA) (Capillo, 1990). PTH is the use of leads that are inserted into the hole drilled in 

PCB to mount the components. Leaded SMT is the method of soldering leaded 

components to the metalized pads on the PCBs. While leadless SMT is to mount non 

leaded SMT parts to the PCB's surface.  (Deckert, 1987). On the other hand, BGA 

assembly is made up of balls in grid pattern to conduct electrical signal from PCB on 

which it's placed. This techniques is the most popular because of easy handling, robust, 

and compatibility with existing surface mount equipment (Capillo, 1990) (Deckert, 

1987). 

 

Figure 2: Electronic packaging technology (Doss, 2011) 
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2.2 Metals 

 In the electronics packaging manufacture, copper, tin and nickel are the most 

important metals for interconnection systems. Copper constitutes the main 

interconnection material used for PCB pattern while tin, nickel or nickel-based alloys and 

gold are used for other contact metallization that specifically prevent degradation or 

oxidation of copper during soldering process . These metals are involved in the ECM 

failure because  of the formation of dendrites (figure 3), and subsequently current 

leakages and electrical shorts. 

 

Figure 3: Formation of tin-lead dendrite (Delhi 2005) 

 Copper is replacing the nickel/iron alloy lead-frames and aluminum soldering 

joint. due to its better thermal conductivity and superior electrical conductivity (Murarka 

Dendrite 
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Shyam P., Verner Igor V., and Gutmann Ronald J., 2000). However, using copper for 

soldering results in a higher risk of contamination due to a greater electrochemical 

migration susceptibility than its aluminum predecessor (Harsanyi, 1999) 

 When applying voltages to a PCB , under harsh environments such as high 

humidity , metal components tend to migrate electrochemically in ion forms and 

eventually lead to short circuit failures (Harsanyi G. , 1995) (Ready, W. J and Turnini, L. 

J., 2002) (Hwang, 1992).  

2.3 Flux 

 Flux acts as a means for suspending the solder particles in the solder paste 

process. It imparts proper viscosity to the paste and also controls paste spreading after the 

print. Besides, it enables wetting of the metal surface to be soldered by removing the 

oxides and other surface films and reducing surface tension. Most importantly, it protects 

the surfaces of the exposed metal from the re-oxidizing at elevated temperatures. There 

are different types of fluxes in PCB assembly industry: rosin based flux, water soluble 

flux, and "no-clean" flux.  

 Rosin based flux consists of gelling or suspension agents, activators, solvents, 

thixotropic agents, and special additives. The percent of each constituents will decide the 

effectiveness of flux in general. Thus flux is designed for each application and normally 

contains up to 60% by weight of rosin, 7-10% thickeners, 5-10% viscosity agents and up 

to 2% activators (Lawson, 2007). To help flux perform better, variety of solvent such as 

alcohols (isopropyl, butyl alcohol and polyethylene glycol) are added to form the 

solution. Rosin is a major element in flux and natural chemical mixture extracted from 

pine trees. Table 1 shows the typical concentrations of several rosin acids. 
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Table 1: Typical rosin composition (Lawson, 2007) (Muren, 1994) (Hwang, 1992) 

 

 Water soluble flux consists of highly active and corrosive organic acids. The PCB 

assembly process leaves behind significant level of corrosive flux residues on the board. 

Depending on the chemistry of the flux, the amount of flux and the geometry of boards 

and component, flux removal is a challenge for manufacturing operation because any flux 

left over on the board can accelerate the failure due to ECM. Therefore flux removal 

process is very important as indicated in the flow chart in figure 4.Typically, the water 

soluble flux residues are removed by an inline or a batch wash system that use DI water. 

 

Figure 4: PCB manufacturing process chart 

 In the electronics industry, it's typical that the flux residues are cleaned after the 

PCB  goes through the reflow soldering process employing water soluble pastes and 
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fluxes. High pressure deionized water solution provide the safest means of cleaning 

(Ellis, 1986). However, contamination after cleaning still occurs if the cleaning process is 

not strictly controlled. 

 "No clean" flux  is used to eliminate the cost of water-based cleaning processes. 

However, it has been reported (Shangguan D., Achari A. and Green W., 1994) that 

dendrites can occur if no clean flux residues are left behind on electrically-biased. Thus, 

it is important that no "no clean" flux residues are left on the board. Any attempt to clean 

no clean flux residues using isopropyl alcohol or water can result in high level of ion 

contaminants which could lead to ECM failures. 

2.4 Assembly Soldering Process 

 In the surface mount assembly operation, PCB soldering process is considered the 

most critical process that has the biggest effect on the electrochemical migration. In this 

regard, it is important to understand the fundamentals of soldering. 

2.4.1 Solder Joint 

 Solder joint is a metallurgical connection formed between two different metal 

surfaces by melting and flowing a solder alloy having a lower melting point than the joint 

members themselves. 

 Solder joints carry electrical, mechanical and/or thermal loads. Electrically, they 

carry electric current across various circuits to various levels. Mechanically, they 

withstand the stresses of expansion and contraction as electronics heat up and cool down, 

and shock and vibration if they move or fall. Thermally, they draw heat away from 

processor chips and other components that run hot. Figure 5 is a flow chart showing 

various phases of solder joint formation. 
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Figure 5: Steps in solder joint formation 

2.4.2 Fundamental of Soldering 

 Soldering is defined as joining of two or more solderable metal surfaces, i.e. 

Metal Surface 1 (e.g. PCB Surface) and Metal Surface 2 (e.g. plated coating on a 

component lead), by introducing a third low molten alloy that reacts in molten state with 

the solid metal surfaces to be joined. 

 In a soldering process, the solder melts and fills the space between the two metal 

surfaces and bonds to them by wetting action. When the soldering process is completed, 

Inter-Metallic Compounds (IMC‟s) are formed at the interfaces of solder and the metals 

as illustrated in figure 6. 

 

Figure 6: Interrmetallic formation (Doss, 2011) 
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2.4.3 Soldering Mechanism 

 Soldering process is summarized in 9 steps in table 2 below. 

Table 2: Soldering mechanism (Doss, 2011) 

 

 

 In step 1, the figure depicts initial state of the metal surface with non-uniform 

oxide film. In step 2, a flux is applied to the metal surface. In this figure, the metal 

surface with a thin non-uniform oxide film and a thin layer of flux is seen. In step 3, the 

oxide film is being removed by the fluxing action as this surface is heated. The figure on 

the left shows the presence of some left-over oxide and the porous organic- metallic salts 

on the surface. In step 4, the oxide film is now completely removed by the flux. The 

figure shows a metal surface and a thin continuous layer of flux. In step 5, liquid solder is 

in direct contact with the metal surface. One can see a very thin film of flux on the 

exposed bare metal surface along with liquid solder. In step 6, liquid solder spreads 

across the entire metal surface forming a thin convex coating with low wetting angle 

thereby showing a good wetting. In step 7, the metal surface is completely wetted by the 

liquid solder. Intermetallic Compound is beginning to form. In step 8, adhesion of the 

solid solder alloy to the base metal is complete with the formation of two intermetallic 

compounds, Cu6Sn5 and Cu3Sn. Finally, step 9 clearly show a real world example of 
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different parts of a solder joint. The solder joint here shows the copper substrate with 

Cu3Sn IMC, followed by Cu6Sn5 IMC and some un-reacted solders. 
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CHAPTER 3: ELECTROCHEMICAL MIGRATION 

3.1 ECM Definition 

ECM is defined as the "growth of conductive metal filaments or dendrites on or 

through a printed board under the influence of a DC voltage bias" (IPC, 1997). However 

this definition is too narrow to cover the characteristic and physical movement of metal 

involved. Thus, many researcher in industry redefine ECM as:" the movement of metal 

ion through an electrolytic solution under an applied electric field between dielectric 

insulated conductors" (Hilman, 2010). ECM can occur on or in almost all electric 

packaging including die surface, epoxy encapsulant, and passive components. ECM is 

known to be accelerated by excessive ionic contamination owing to insufficient 

cleanliness. 

3.2 ECM Mechanisms 

  Dendritic growth and conductive anodic filaments (CAF) are two common ECM 

mechanisms. Dendrite growth is a descriptor for ECM along a surface that produces a 

dendrite morphology such as "tree-like" or "Feather-like" form. CAF is beyond the scope 

of this study and thus will not be described. The traditional electrochemical migration of 

metal involves the following steps: 

 Step 1: Creation of an electrolytic solution containing sufficiently conductive 

metal ions in a humid environment in presence of ionic contaminants. 

 Step 2: Electro-dissolution of metal in presence of positive electric field and an 

electrolyte.  
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Figure 7: Electrochemistry of ECM 

 

 This step usually occurs adjacent to anode, e.g. 

H20 O2 +4H
+
 +4e- 

Cu  Cu
+
 +e- or Cu Cu

2+
 +2e- (Dissolution of copper) 

 Step 3: Migration of charged particles through a solution under the influence of an 

electric field 

 
                                         Figure 8: Ionic migration 



www.manaraa.com

15 
 

 In figure 8 the positive ions travel along the field lines (in solution) from anode to 

cathode while electrons travel from cathode to anode, a reverse direction in the external 

conductor.  

 Velocity can be computed as follows:  

𝑣 =  𝜇 ∗ 𝐸 𝑤ℎ𝑒𝑟𝑒  𝜇 =
𝑞

(6𝜋𝑟𝜂)
 

 𝑣: velocity (m/s) 

 E: field strength (V/m) 

 𝜇: mobility (m
2
/[Vxs]) 

 q: electron charge (C) 

 r: ionic radius (m) 

 η: viscosity (m
2
/s) 

 Step 4: Electro-deposition occurs once ions reach the cathode. The cathodic 

reactions are represented as follows:  

2H2O + 2 e
-
  2OH

-
 +H2 

O2 + H2O + 4e
-
  4OH

-
 

Cu
+
 + e

-
  Cu or Cu

2+
 +2 e

-
 Cu 

 The rate of deposition of metal ion depends on the  metal ion concentration in the 

aqueous solution because cathodic electrodeposition is largely diffusion controlled. 

However, the production of hydroxyl ions (OH-) at cathode can reduce the rate of Cu 

deposition by combining metals ions with hydroxyl ions to form insoluble hydroxides. 

Thus ECM rate is correlated with solubility product of the metal ion with hydroxide 

(Hillman, 2010). Furthermore, ionic contaminants (such as Cl
-
) can change the ECM rate 
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by forming alternate reaction paths and forming additional ionic species. For example, 

CuCl2 can form two electrons, Cu
+
 ,and Cl

-
. 

3.3 ECM Drivers 

 There are two main drivers that lead to ECM: voltage/electric field and 

contamination. Time to failure modes will provide a more quantitative understanding of 

these primary drivers. 

3.3.1 Voltage and Electric Field 

 Voltage is primary drivers for the two processes, namely, electro-dissolution and 

ion migration. IPC-2221A allows 15V/mil on copper traces. Based on the study of DfR, 

using IPC-B-25 coupons with NaCl, dendritic growth occurs at 6V/6.25 mil (0.96V/mil) 

space and does not occur at  42V/25 mil (1.68V/mil) which defines the combination of 

electric filed and spacing to initiate ECM (Hilman, 2010). Some studies have shown that 

the occurrence of ECM is strongly driven by the electric field strength (L. Zou and C. 

Hint, 1999), (E. Bimiller and C. Hillman, 2004).  

3.3.2 Contamination 

 Ionic contaminants are of two different types: insoluble in water such as AgCl and 

soluble in water like NaCl. The greatest concern is that ionic contaminants are very 

common in electronics manufacturing process because of the formation of anions and 

cations during the interaction between components and PCB metallization with 

manufacturing process chemicals.  

 Some of the sources of contaminants in printed board fabrication processes are: 

rinse water, fluxes, handling, and storage and use environment. There are many processes 

during PCB fabrication which can result in accumulation of contaminants on the board. 
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Etching, neutralizer, cleaning, photoresist stripping and electroless plating are examples 

of the processes during PCB fabrication that can leave behind ionic contaminants.  

3.3.3 Time to Failure Models 

 Failure models can provide a more understanding of the primary drivers 

quantitatively of ECM. Many models have been used in the electronics industry but no 

one has established the benchmark of time to failure for specific circuit boards because of 

the unpredictable drivers of ECM. Below are the potential time to failure models that 

based on  chemical kinetics. 

3.3.3.1 Arrhenius Model 

 The Arrhenius model is based on the fundamental chemical behavior 

𝑡𝑓 = 𝐴 exp  
∆𝐻

𝑘𝑇
  

 A : scaling constant, 

 ΔH : activation energy (eV),  

 k : Boltzmann constant (8.62 x 10
-5

 eV/K) 

  T : temperature (K) 

 The model was widely used to describe variety of chemical reaction but is limited 

to temperature effects. Because of that Hornung (Hornung, 1968) proposed a 

mathematical model which is   

𝑡𝑓 =
𝛼𝐺

𝑉
exp  

∆𝐻

𝑘𝑇
  

  α : proportionality constant 

  G : electrode spacing 

  V : voltage 
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  ΔH : activation energy (eV) 

 k : Boltzmann constant (8.62 x 10
-5

 eV/K) 

 T : the applied temperature (K) 

 Based on the dendritic growth of silver through borosilicate glass under an 

electric field , he found activation energy is 1.15 eV which linearly correlated with 

dendritic growth rate. The Arrhenius and Hornung equations are derived from 

assumptions based around elastic collisions and kinetics reaction rate. (Hilman, 2010) 

3.3.3.2 Barton and Bockris (J. Barton and J. Bockris, 1962) 

 In 1962, Barton and Bockris published the model of growth of dendrite in 

electrolytic solution 

𝑡𝑓 =
ℎ8𝛾𝑅𝑇

𝐹2𝐷𝑐∞𝜂2
 

  h : conductor spacing 

  γ: interfacial energy 

  R : universal gas constant 

  T : temperature 

 F :Faraday constant 

 D: diffusion coefficient 

  c∞: metal ion concentration, 

  η :overpotential 

 i:current density at the dendrite tip 

 The Barton and Bockris model is a good general model for dendritic growth but it 

only applies when the dendritic growth is the rate limiting step and includes no terms for 
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path formation, electrodissolution, and ion transport. Nevertheless, the model is based on 

the experimental observations of dendritic growths, thus has some predictive ability. 
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CHAPTER 4: EXPERIMENTAL METHODS 

 

 

4.1 Characterization Technique 

4.1.1 Cross-Sectioning  

 Cross-sectioning is one of the failure analysis techniques that allows for in-depth 

analysis of the inner layer of chips or any subjects from PCB by mechanically exposing a 

plane of interest in a die or package. Cross-sectioning procedure consists of sample 

preparation, grinding, polishing the specimen until the plane of interest is ready for 

optical or electron microscopy. Conventional micro-sectioning starts with sample 

preparation. This consists of sawing and mounting which involves the encapsulation of 

the specimen with an epoxy or acrylic material. When excising the specimen out of the 

circuit board, it is always a good practice to saw or cut as close as possible to the target to 

ensure it will fit inside the mounting cup, as well as to reduce the grinding needed during 

actual sectioning. Thus, once the sample is cut and cleaned, it's critical to position the 

specimen in the mold correctly. The mold is to help to hold the specimen intact and 

provides  a better handle on the component during grinding and polishing. 

 

Figure 9: Example of a sample mounting mold 
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 A mix of hardener and resin is usually poured inside the cup slowly to avoid 

bubbles as much as possible. Based on the total volume of material needed and the 

mixing ratio specified, one calculates how much of hardener and resin is needed. One 

stops mixing when the epoxy is transparent and homogenous. The sample is then 

carefully moved into a desiccators equipped with a vacuum pump to allow the epoxy to 

fill all gaps and the air bubbles to rise to the top. The final step of preparation is to allow 

the epoxy cure at ambient pressure. 

 

Figure 10: Illustration of epoxy being poured into the mounting cup/mold 

  The next sample preparation step is grinding of the encapsulated specimen to the 

point of interest. A typical grinder/polisher has a platen (or a set of platens) over which 

the grinding material (Sic paper, polishing cloth, diamond paste, etc.) is placed. The five 

grit sizes used are 320, 400, 600, 800, and 1200. If the cross- sectioning component 

contains ceramic or similar material, one grinds the specimen on 70 micron and 60 

micron metal bonded diamond-grinding disc until reaching the target plane. The 

specimen then is washed and cleaned in a methanol ultrasonic bath. If the cross-

sectioning component contains non-ceramic components, one starts grinding with 320 

grit paper , then 400 grit paper when 3-4 mm of thickness is left between the grinding 

plan and the target feature. 
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Figure 11: The images (from left to right) of the target areas at 320 and 400 grit papers. 

(Jabil) 
 
 One washes the sample with water and continues grinding with 600, 800, and 

1200 grit paper to reach the center of the designed feature. 

 

Figure 12: The images (from left to right) of the target areas at 600, 800, and 1200 
grit papers. (Jabil) 

 

 Polishing follows grinding. Polishing is very similar to grinding which involves 

the use of fine abrasive suspensions and several different polishing pads to produce a 

mirror finish. Rough polishing is usually done using 3 micron diamond particles. Fine 

polishing is usually done using 1-micron, then 0.05-micron alumina particles 

(Siliconfareast) (B. Engel, E. Levine, J. Petrus, and A. Shore, 2004). 

 

Figure 13: The images (from left to right) of the target areas after polishing with 

3.0, 1.0 and 0.05 micron colloidal silica suspensions (Jabil) 



www.manaraa.com

23 
 

4.1.2 Ion Chromatography 

 Ion chromatography is an analytical technique used for analyzing anions such as 

fluoride, chloride, nitrite, nitrate, sulfate, phosphate as well as organic acids in part per 

million (ppm) quantities in aqueous solutions. It is one of the members of large family of 

analytical tools that comes in many forms, e.g., paper chromatography, liquid 

chromatography, gas chromatography, high pressure liquid chromatography, but all of 

these employ the same basic principles. 

 The ion chromatography method is defined by a separation mechanism and a 

detection method. The separation mechanism is a column that consist of ion exchange 

resins. The usual chemical group for cation-exchange resin is either sulfuric or carboxylic 

acids while ammonium group is for anion separation exchange. The separation happens  

between two phases: stationary phase and a mobile phase. Figure 14 show the process of 

ion exchange :analyze ions are marked A and eluent ions are marked E. Eluent ions from 

the eluent solution are used to extract the analyze ions out of its solution. Both A and E 

compete with each other for the exchange positions. 

 

Figure 14: Schematic diagram showing the ion exchange process  (Eith, 2001) 
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 Below is the cation exchange with sulfuric acid group reaction: 

-SO3
-
 H

+
(s) + Mx

+
(aq)  -SO3

-
 Mx

+
(s) + H

+
(aq) 

 Mx+ : the cation of charge x. 

 (s) : the solid or stationary phase. 

 (aq) : the aqueous or mobile phase. 

  The equilibrium constant is 

      [-SO3
-
 Mx

+
]s [H

+
]aq 

Keq = ----------------------------- 

      [-SO3
-
 H

+
]s [Mx

+
]aq 

 

 The length of time that resin is retained in the column depends on the value of 

Keq. Adjusting the pH ([H+]aq)  helps control the time cation extracts from column .  

 Ions are separated and flown through mobile phase will be then detected by 

measuring the conductivity of the solution using a conductivity cell. Because mobile 

phase contains ions that create a background of conductivity, an eluent suppressor which 

consist of a ion exchange column or membrane, is used to convert the mobile phase ions 

to a neutral form. For cation analysis, the eluent suppressor supplies OH- to neutralized 

common group such as HCl, or HNO3. For anion analysis, the eluent suppressor supplies 

H+ to neutralize the anion.  

 Figure 15 is the sample output data of ion chromatography. Each peak represents 

an ion from sample solution and the height of each peak correlates to the concentration of 

each ion moving through the column at a particular time which is called elution time. 
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Figure 15: Ion chromatography data from an anion analysis of glacial water (Bruckner) 

 Ion chromatography has been used extensively and has become a powerful tool in 

the semiconductor industry, especially in the identification of contaminants that cause 

yield and quality issues. This is because it can provide quantitative analysis of anions in 

the ppb range, making it capable of detecting contaminants on the surface of a wafer, die, 

or package. Since ionic contamination is a major source of corrosion problems in the 

industry, ion chromatography is considered to be an indispensable tool when analyzing 

water samples suspected to be the cause of corrosion issues on the PCB. 

 

Figure16: Ion chromatography 
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4.1.2.1 Ion Chromatography Preparation 

 Tested solution is prepared by one of two technique options: (a) localized 

extraction - to extract residues at specific locations; (b) bag extraction – to extract 

residues from the entire PCB assembly. 

 4.1.2.1.1 Localized Extraction 

 Localized extraction (LE) is a process of extracting residues at specific locations 

on the PCB assembly. It can function as a localized cleanliness tester. By performing the 

electrical test that is a predictor of field performance based on ionic cleanliness, LE gives 

„Clean‟ or „Dirty‟ reading. The extracted sample can be used for follow-up analysis to 

determine what contaminants and their amounts are present. LE method helps in 

extracting ionic contaminants from PCB surfaces. Figure 17 shows the picture of a 

localized extraction set up used in the current thesis work.  

 

Figure 17: C3 cleanliness tester-localized extraction 

Test Cell 
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 The test cell area (see in figure 18) is 10mm dia. circle / 0.7 sq. cm.; the footprint 

required is 16mm dia. circle / 2.0 sq. cm. The test cell is specifically designed to collect 

24 ml of solution. The extraction process has been designed to achieve effective ionic 

residue removal using the following 3 steps per cycle: 

1: Solution heating / delivery to the extraction site (see the red arrow in  figure 

18). 

2: Soak and solubilization time at the bottom area of the cell (see the yellow in 

figure 18). 

3: Aspiration of solution to collection cell (see  the blue arrow in figure 18). 

 

Figure 18: C3 cleanliness test cell (Foresite) 

 This cycle is repeated 9 times to ensure effective residue removal. Generally, the 

testing is basically based on the assumption that a more corrosive ionic species will cause 

electrical leakage event to occur more quickly; insulative residues take longer to cause  a 

leakage event. 
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4.1.2.1.2 Bag Extraction 

 Bag extraction is a process for extracting the residues from the entire PCB 

assembly. This process is employed to test the overall cleanliness of a board. There are 

three important steps to this process. First, the board needs to be enclosed by a clean 

plastic bag as shown in figure 19. Second, a mixture containing 75%  Isopropyl Alcohol 

(IPA) and 25% Dionized Water (DI) is placed in the plastic bag to cover the entire PCB 

area. Third, one hour heating at 80°C is  applied to the whole package using precision 

heating equipment. 

 

Figure 19: Bag extraction process 

 The 75/25 of IPA/DI water solution is recognized as an acceptable fluid by IPC to 

extract the residues from the PCB assembly. The theory is that the alcohol/water mixture 

dissolves all the flux residues from the boards and the reaction rate is increased by 

heating up to a higher temperature. The extraction solution  is  used for ion 

chromatography after one hour of cooling. 

4.2 Test Vehicle Design 

 The test vehicle was a specially designed PCB  to perform water drop test. 

between two conductor pads in condensed moisture environment at room temperature. It 

was designed per IPC-A-600 specification. 
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 The design process was divided into two steps. The first step was to design the 

test cell. Second step was to design the board‟s layout. The table 3 below shows the 

designed parameters and variables for this experiment. 

Table 3: Test vehicle PCB design parameters and variables 

Variables Parameters 

Number of spacing Cell Diameter 

Surface Finish Cell Thickness 

Pad Size Volume of test solution 

 

 Figure 20 shows the details of the test cell design. The test cell structure is 

standardized per IPC-A-600 and has five layers. Layers structure were  copper layer one, 

dielectric layer one (FR4),solder mask layer, the copper layer 2 (FR4), and dielectric 

layer 2. Also, the top of copper pad was processed through hot air solder leveling 

technique (HASL) to coat the PCB pads with solder alloy. The cross-sectioning 

characterization process showed the HASL covered the entire copper pads. This was 

done to eliminate interference in the electrode reactions from the base metal copper. 

 In figure 20, 'x' is defined as the spacing between two copper pads, while 'a' is the 

width of copper pad. The width of the pad is maintained constant at 50 mils. The 

diameter of test cell is 8 mm. The depth of the cell starts from copper layers 1 to copper 

layers 2 is 1.5 mm.  
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Figure 20: The cross-sectioning of test cell structure 

 Table 4 shows the various design spacing between pads ( 'x' ) and Pad length ( 'a' ) 

on the test cell. There are five different pad spacings and widths in order to have a variety 

of options as much as possible. But in this investigation, the purpose to this research may 

only focus on the specific spacing and width. 

Table 4: Test PCB pad design 

PCB Pad Spacing, (x), mils Pad Width (a), mils 

6.25 50 

12.5 70 

25 90 

37.5 110 

50 130 
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 The table 5 below summarizes the test cell materials used in the ECM 

experiments.  

Table 5: Test cell materials 

Surface Finish Board Material Pad Material 

Tin-Lead HASL FR4 Copper 

Lead Free HASL Solder Mask  

 

 

         Figure 21: Fabricated lead free cell  Figure 22: Fabricated tin-lead cell 

 Figure 21 and 22 are examples of lead free and tin-lead cells. Each of these boards 

consist of 20 test cells as shown in figure 23. The row of the board corresponded to the 

different dimension of the copper pad while the columm corresponded to the different 

spacings between copper pads as shown in the table 5 above.The board dimensions are 

5.8”x2.2” and contains 20 cells with identical 8 mm diameter, 1.5 mm deep cavities. 
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          Figure 23: Completed fabricated test vehicle layout 

4.3 Water Drop Test Procedure and Setup 

 Before doing the water drop test  it is important to set up the right circuitry which 

is crucial in collecting the right data. Therefore, the equipment and material used had to 

be tested and calibrated before using. The following equipment and materials below were 

needed for running the test. 

 

Figure 24: Water drop test equipment set up: (1) power supplier-lambda LLS8040, (2) 

keithley picoammeter, (3) pipetter, (4) anion samples 

2 

 1 

3 

4 

1 
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Figure 25: Water drop test equipments set up: (5) CRT monitor, (6) computer screen 

(with excel data display) 

 

 
 

Figure 26: Water drop test equipments set up: (7) microscope, (8) test vehicle board, (9) 

gator connector cable 

5 

6 

7 

8 9 
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 The procedure to perform WDT is shown below. First, one places the board 

for viewing under the microscope, so that the parallel conductors are in view. One 

then uses the eye dropper, places a drop of liquid sample across the conductors that 

are in view under the microscope, and at least 0.5” away from the place where 

external wires are attached to parallel conductors. Secondly, one connects USB 

interface into computer and turns Keithley unit on, then opens excel and clicks on 

add-in ExceLINX to create “Configure Meter” worksheet and select device 

“KE6485_COM2”. One makes sure to "Change Status/Cmd" to “Detect Device” on 

worksheet and clicks on ExceLINX add-in. The "Status/Cmd" should change to 

“Running” then say “Task Stopped Successfully” with an updated device reading 

KE6485_COM2*. Finally, one changes data in worksheet to reflect the test 

parameters need to run test. Figure 27 is the connection chart of the equipment and 

material: A voltage is applied to the test cell. A picoammeter is connected in series 

with voltage supplier. A computer software is connected with picoammeter to 

record the current. 

 To avoid fault data, these are a few things need to consider during testing. 

First, one makes sure all electrical cables are connected probably. Second, one 

needs to keep an eye on the microscope to visually see the ECM form and keep 

tracking the record. Finally, one is required to wear nitrile glove to prevent 

contamination and anti-static protection. 
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Figure 27: Flow chart illustrating set up procedure 

4.4 Design of Experiment 

The design of experiment (DOE) has three factors which are anion type, pad 

spacing, and surface finish. Only three common inorganic acid anions are tested: 

chloride, bromide, sulfate, and one organic acid anion: succinate. The spacing factor has 

tested with two levels of 12.5 mil and 25 mil which represent the most common design 

spacings in PCB in the industry. The surface finishes are tin-lead HASL and lead free 

HASL. The experiments are replicated five times. The total DOE run is 90 in 45 boards. 

The output of this DOE is to investigate on how the current of the individual anions and 

their interaction that affect the time to failure on PCB. Thus the outcome of this DOE is 

measuring current and time to failure . Table 6 summarizes the DOE matrix. 
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Table 6: DOE parameter matrix 

 
*Detailed run matrix is shown in Table 8, section 5.2.2 

 

4.5 Cleaning Process 

In order to evaluate the "as received" boards, a simple DI water drop test was 

performed. If dendritic growth occurs in less than 180 seconds,   the "as-received" boards 

are not clean enough to be used as starting material for the experimental study. 

 In order to judge the level of "as received" contamination, WDT is done on "as-

received" boards with DI water. If the board does not have circuit short fast less than 180 

s (as an estimation), one can proceed with DOE matrix as planned in table 6. If the board 

has circuit short fast less than 180 s, bag extractions is proceeded using IPC-TM-650, 

method 2.3.28 with 75% IPA, 25% DI water mixture  or 100% DI water, both at 80°C for 

one hour. Once one decides which bag extraction solution extracts the contamination 

more effectively, all boards are cleaned with the same process which requires for a 

repeatable experimental data. Figure 28 shows the cleaning process. 
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Figure 28: Cleaning process flow chart 

4.6 Water Drop Test 

The WDT procedure was performed per IPC TM650, 2.6.1. In this study, a 

pipetter was used to dispense 140 μl of each test anion at an optimized concentration into 

the 12.5 mil or 25 mil spacing test coupon cell having different surface finishes: Sn-Pb 

and Pb free HASL. The field strength applied was a constant 0.5v/ mil. Current and time 

was monitored during the test. 

 Anion concentrations were optimized to achieve dendritic short failures within a 

time window of 0 to 180 seconds. This was accomplished by trying different 

concentrations of each anion and selecting the concentration which produced dendritic 

shorts within the prescribed time window. 
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 Because of the differences in anion activity, the concentrations used varied from 

one anion to another. Table 7 below summarizes the concentrations of each anion.  

 

 

Table 7: DOE matrix for concentration 

 
* Succinate is not used in the final DOE owing to an absence of ECM in the entire range 

of concentrations tested (see figure 32 for further details). 

  

 Figure 29 shows the electrochemical migration on tin-lead board after applied 0.5 

v/mil of field strength and 140 μl of Br- solution. The tree-like structure creates the 

bridge between two pads that lead to a short circuit. The bubble on the figure maybe the 

result of competing cathodic electrode reaction involving hydrogen gas evolution. The 

white pattern indicates the formation of white crystalline deposits on the cathode which 

inhibited cathodic reduction of tin ions.  

 

                       (a)                                           (b)                                          (c) 

Figure 29: Electrochemical migration of Br- on tin-lead board: (a) virgin board, (b) ECM 

growth, (c) ECM bridge 

 

Dendrite 

Cathode Anode 
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 Figure 30 shows the electrochemical migration in the presence of Br-, while 

applying the same field strength and volume of solution as above on a lead- free board. 

Within 180 second under constant voltage, the tree-like structure appears and creates a 

bridge between the two pads. Once the dendrite reaches the other side of the electrode, a 

short circuit develops. 

 

                     (a)                                              (b)                                             (c) 

Figure 30: Electrochemical migration of Br- on lead free board: (a) virgin board, (b) 

ECM growth, (c) ECM bridge 

 

 The same experiment is repeated as described  in table 7 for different anions. The 

same result is repeated as figure 29 and 30 but occurs at a different rate. In chapter 5, 

these results are discussed in detail with respect to time to failure for each test coupon. 

 

Dendrite 
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CHAPTER 5: RESULTS 

 

 

5.1 Cleaning Process Result 

 To evaluate the as received boards, a simple DI water drop test was performed. 

Surprisingly, dendritic growth occurred quickly in less than 180 seconds. This showed 

that the as-receive boards were not clean enough to be used as starting material for the 

experimental study. A C3 extraction of four cells on each cleaned tin-lead and lead free 

board was done. Then the C3 extract solution was analyzed by ion chromatography for 

total anions. Ion Chromatography results were  presented in figure 31. The overall total 

anions detected were lower in the DI water cleaned boards than the 75/25 IPA/DI cleaned 

boards. Repeating the DI water WDT test on DI water cleaned boards did not produce a 

failure. On the basis of these results, all the boards were cleaned with DI water using 

IPC‟s extraction parameters. 

 

Figure 31: Ion chromatography anions results 

Total Anions 
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5.2 DOE Parameter Selection 

5.2.1 Succinate Effectiveness Result 

 Figure 32 shows the current vs. time plot for 1000 ppm succinate ions. There was 

no short circuit during the time window studied. The current tended to decrease as time 

passed 180 seconds. There was no indication of dendrite growth after 180 seconds. This 

result showed that the effect of succinate on time to failure was insignificant. Thus, it was 

legitimate and reasonable to eliminate succinate off the DOE study.  

 

Figure 32: ECM plot (Current vs. Time) for 1000ppm succinate ions on tin-lead (Sn-Pb) 

and lead free (Pb free) boards 

 

5.2.2 Final DOE Matrix 

 Because there was no significant effect of Succinate on time to failure, the final 

DOE matrix was revised for this study as in table 8. The final number of run for this 

study was 60. There was no organic acid anions in this study. There were only three 

anions: Chloride, Bromide, and Sulfate. 

 

Succinate on Sn-Pb and Pb free 
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Table 8: Final DOE matrix 

 

5.3 DOE Test Result 

 Response from each run was manually recorded on an individual basis. The result 

of sixty run DOE is shown below. 

Table 9: DOE result 

DOE PLAN 

Run Block 
Parameters Responses 

Anions 
Surface 

finish 

Spacing 

(mil) 

Current 

(miliamp) 

Time 

(sec.) 

1 1 Cl_3ppm Tin/Lead 12.5 0.1106933 22.52441 

2 1 Cl_3ppm Tin/Lead 25 2.798575 8.332031 

3 1 Cl_3ppm Lead free 12.5 0.1543589 6.791992 

4 1 Cl_3ppm Lead free 25 0.1310899 7.411133 

5 1 Br_15ppm Tin/Lead 12.5 0.1154548 28.65918 

6 1 Br_15ppm Tin/Lead 25 0.3042889 24.30273 

7 1 Br_15ppm Lead free 12.5 0.1105361 61.94727 

8 1 Br_15ppm Lead free 25 0.387433 25.82715 

9 1 Sulfate_2ppm Tin/Lead 12.5 1.041212 37.29004 

10 1 Sulfate_2ppm Tin/Lead 25 1.190811 15.4248 

11 1 Sulfate_2ppm Lead free 12.5 0.315529 162.9844 

12 1 Sulfate_2ppm Lead free 25 1.167376 32.6748 

13 2 Cl_3ppm Tin/Lead 12.5 0.1157627 32.67773 

14 2 Cl_3ppm Tin/Lead 25 2.169119 50.87402 

15 2 Cl_3ppm Lead free 12.5 0.1495795 5.864258 

16 2 Cl_3ppm Lead free 25 0.1143712 9.251953 

17 2 Br_15ppm Tin/Lead 12.5 0.5064873 55.49902 

18 2 Br_15ppm Tin/Lead 25 0.4082481 26.36816 

19 2 Br_15ppm Lead free 12.5 0.1049995 68.13086 

20 2 Br_15ppm Lead free 25 0.3213451 31.14258 



www.manaraa.com

43 
 

Table 9: (continued) 

21 2 Sulfate_2ppm Tin/Lead 12.5 1.797316 58.26563 

22 2 Sulfate_2ppm Tin/Lead 25 1.091153 14.41016 

23 2 Sulfate_2ppm Lead free 12.5 0.7345902 41.63086 

24 2 Sulfate_2ppm Lead free 25 1.823513 43.14355 

25 3 Cl_3ppm Tin/Lead 12.5 0.1261358 15.41504 

26 3 Cl_3ppm Tin/Lead 25 1.975731 12.65137 

27 3 Cl_3ppm Lead free 12.5 0.1022478 9.87207 

28 3 Cl_3ppm Lead free 25 0.1406654 33.92285 

29 3 Br_15ppm Tin/Lead 12.5 0.1389758 34.84473 

30 3 Br_15ppm Tin/Lead 25 0.3961222 13.80859 

31 3 Br_15ppm Lead free 12.5 0.1011894 56.43652 

32 3 Br_15ppm Lead free 25 0.3018869 23.28711 

33 3 Sulfate_2ppm Tin/Lead 12.5 0.144669 42.8623 

34 3 Sulfate_2ppm Tin/Lead 25 2.584935 16.56445 

35 3 Sulfate_2ppm Lead free 12.5 0.1337577 108.5059 

36 3 Sulfate_2ppm Lead free 25 1.038044 47.67871 

37 4 Cl_3ppm Tin/Lead 12.5 0.1083965 32.98438 

38 4 Cl_3ppm Tin/Lead 25 2.074756 50.21777 

39 4 Cl_3ppm Lead free 12.5 0.1369792 4.623047 

40 4 Cl_3ppm Lead free 25 0.1449571 11.41602 

41 4 Br_15ppm Tin/Lead 12.5 0.1016564 24.37012 

42 4 Br_15ppm Tin/Lead 25 0.3257247 27.75781 

43 4 Br_15ppm Lead free 12.5 0.1295802 8.639648 

44 4 Br_15ppm Lead free 25 0.3090484 15.96387 

45 4 Sulfate_2ppm Tin/Lead 12.5 2.231781 79.84473 

46 4 Sulfate_2ppm Tin/Lead 25 1.367211 8.541016 

47 4 Sulfate_2ppm Lead free 12.5 0.3231619 120.0215 

48 4 Sulfate_2ppm Lead free 25 1.023792 44.61328 

49 5 Cl_3ppm Tin/Lead 12.5 0.128286 20.25391 

50 5 Cl_3ppm Tin/Lead 25 1.272251 24.04102 

51 5 Cl_3ppm Lead free 12.5 1.050266 7.702148 

52 5 Cl_3ppm Lead free 25 0.1465051 15.42676 

53 5 Br_15ppm Tin/Lead 12.5 0.1158731 41 

54 5 Br_15ppm Tin/Lead 25 0.3095593 63.07422 

55 5 Br_15ppm Lead free 12.5 0.1334971 17.58008 

56 5 Br_15ppm Lead free 25 0.3145386 39.37891 

57 5 Sulfate_2ppm Tin/Lead 12.5 1.585067 61.66016 

58 5 Sulfate_2ppm Tin/Lead 25 1.422541 14.80176 
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Table 9: (continued) 

59 5 Sulfate_2ppm Lead free 12.5 0.1943044 184.3555 

60 5 Sulfate_2ppm Lead free 25 1.084166 25.49316 

 

 Figure 33 is the test result of Cl
-
 3 ppm on tin-lead board, spacing 12.5 mils. The 

short circuit clearly is defined for Chloride. Run number one shows that the current 

suddenly increased instantly up to 0.1106 milliamps and caused circuit short at 22.5 

second. Furthermore, after 22.5 second the current decreased, this was because the flow 

of fluid or solution created by the applied voltage on the test cell was strong enough to 

break the ECM dendrite bridge between the pads. However, the current started increasing 

again and caused a circuit short. ECM kept growing and eventually appeared at anywhere 

between two pads.  

 

Figure 33: ECM plot (Current vs. Time) for 3 ppm Chloride anion on tin- lead 12.5 

mils spacing 

 

 Figure 34 shows the short circuit in the tin-lead board, 25.0 mils spacing. The 

familiar pattern happened with 25.0 mils spacing. However, the time to failure range was 
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more abroad than the 12.5 mils. The time to failure for 12.5 mils was from 18 to 35 

seconds while 25.0 mils spacing time to failure ranged from 9 to 60 seconds.  

 

Figure 34: ECM plot (Current vs. Time) for 3 ppm Cl
-
 on tin lead_25.0 mils spacing 

 It was noticed that two different patterns of how the circuit short appeared. In 

figure 33 and 34, many test coupons started increasing steadily in current cause the 

circuit short(pattern 1). In contrast, many test coupons had current suddenly jumped up 

and cause circuit short (pattern 2). These two patterns repeated with other anions also and 

made it difficult to record the accurate response especially with pattern 1. Thus, to 

overcome this issue, each run was observed visually and recorded manually to know 

exactly when the circuit was short. 

5.4 Effect of Pad Geometry and Field Strength on ECM Susceptibility 

To estimate reliability risks due to ECM failures, the effect of different factors on 

time to failure was studied. Figure 35 shows the effect of aspect ratio on time to form 

dendritic shorts when 6.25V was applied across adjacent pads with different aspect ratios 

(the ratio of length over width of the pads, using a 3 ppm chloride solution. It is evident 

from this chart that failure occurs faster at larger aspect ratios. 
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Figure 35: Aspect ratio vs. time 

 Figure 36 shows that current increases with increased spacing in tin-lead test 

board. Figure 37 shows a generally increasing trend in time to failure with increased 

spacing between electrodes in tin-lead test board. These two plots were obtained at a 

constant field strength of 0.5volt/mil.  

 

Figure 36: Current and spacing on tin lead board 
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Figure 37: Time to failure vs. spacing on tin lead board 

 Figure 38 shows that WDT current on lead free board at the onset of dendritic 

shorts decreases dramatically as the spacing between the electrodes is increased from 

6.25 to 50 mils. This is understandable because the field strength decreases with 

increased spacing. Figure 39 shows that time to failure on lead free has an increasing 

trend with spacing between the electrodes. This result indicates that the time to form 

shorts is related to the time for mass of tin dendrites to move across the two adjacent 

pads.  

 

Figure 38: Current vs. spacing on lead free board 
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Figure 39: Time to failure vs. spacing on lead free board 

5.5 Interaction Between Factors 

Figure 40 presents trend plots that shows the influence of spacing, surface finish, 

and type of anion on time to failure. 

 In the anion-surface finish interaction plot, as the surface finish changes from Sn-

Pb to Pb free, time to failure decreases in the presence of chloride, decreases in the 

presence of sulfate, and remains unchanged in the presence of bromide. This result 

indicates that the Pb free finish is more prone to dendrite formation than the Sn-Pb finish.  

In the anion-spacing interaction trend plot, as the spacing increases from 12.5 mil 

to 25 mil, the time to failure decreases in the presence of sulfate and bromide, while it 

increases in the presence of chloride. At this point, it is not clear as to why the time to 

failure decreases with pad spacing in the presence of chloride ions.  

In the surface finish-spacing interaction plot, it is evident that time to failure 

decreases with increased spacing for both of the surface finishes. This trend is not 

surprising since the dendritic growth is primarily a mass transfer process. 
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Figure 40: Interaction plot of factors for time (sec) 

Figure 41 presents the influence of anion, surface finish, and spacing on current. 

In the anion-surface finish interaction plot, current decreases significantly as the surface 

finish changes from tin-lead to lead free for sulfate and chloride but remains mainly 

unchanged for bromide. In the anion-spacing interaction plot, it is seen that the current 

increases as the spacing increases for all three anions studied. In the surface finish-

spacing interaction plot, the current increases with increased spacing for both surface 

finishes. 

 

Figure 41: Interaction plot of factors for current (milliamps) 
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5.6 Statistical Analysis  

 The statistical analysis was performed to evaluate the significance of data. The 

probability of making a type error sigma σ is 0.05. To determine the effect of variances 

on time to failure and current, P-value is compared with σ level. If P-value is less than 

0.05, the effect of variance is significant and vise versa.  

 Figure 42 shows the P-value of interaction between anions, surface finish and 

spacing is greater than 0.05. This interaction does not have a significant effect on time to 

failure. Similarly, the interaction between surface finish and spacing is also insignificant. 

On the other hand, the interaction between anions versus surface finish and anions versus 

spacing effects significantly on time to failure result. Regarding individual variance, 

surface finish has no significant effect on time to failure, as well as blocks. In this 

experiment, block is defined by running test coupon on different days. In contrast, anions 

and spacing are two significant variances that effect mostly on time to failure result.  

 

Figure 42: Data analysis of variances on time to failure 

 Figure 43 shows the interaction between variances and individual variance has 

significant effects on the current result. While block variance shows no significant effect 
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on current.

 

Figure 43: Data analysis of variances on current 

Figure 44 presents a box plot of time to failure as a function of spacing, surface 

finish, and anion For chloride, the lead free finish fails slightly faster than the tin-lead 

finish. For bromide: the difference between tin-lead and lead free is statistically 

insignificant. For sulfate, the 25 mils spacing fails faster than the 12.5 mils spacing. 

 

Figure 44: Variables vs. time to failure (sec) 

 Figure 45 presents the box plot of current at failure as a function of spacing, 

surface finish, and anion. 
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Figure 45: Variables vs. current at failure (milliamps) 

 For chloride, Pb free appears to show least variation in the current with the two 

spacings while Sn-Pb shows a large difference in the current to failure between the two 

spacings. For bromide, there is an exceptionally small variability in the current at failure 

between the two surface finishes and there is a slight difference in the WDT current at 

failure with different pad spacings. For sulfate, average median WDT current at failure is 

lower for Pb free than Sn-Pb. 

  

Figure 46: Total anions (ppm) over WDT current vs. test variables 
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In order to compare the effect of different anions, we normalized the ppm levels 

of anions by plotting the ratios of anion ppm per WDT current and anion ppm per unit 

time as a function of the various test variables. Figure 46 shows that sulfate concentration 

required to cause dendritic failures is the lowest per unit WDT current. Bromide exhibits 

the highest ppm levels per unit WDT current with chloride being slightly higher than 

sulfate.  

 

Figure 47: Ppm over time vs. test variables 

 Figure 47 shows that sulfate again exhibits the lowest ppm levels per unit time to 

failure while bromide required the highest concentration to cause failure per unit time. 

The ppm level of chloride that causes failures is only slightly higher than sulfate. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

 

6.1 Conclusion 

 In this thesis, the study of time to cause the failures was presented. A test vehicle 

was developed for the WDT to obtain the time to cause ECM failure in presence of 

different anions. Based on the results, the activity of each anions was the main effect on 

time to failure. The water drop test could be used to assess the propensity of various 

anions to form dendrites. Pad geometry and spacing had significant effects on dendritic 

growth. The threshold ppm level of sulfate required to cause dendritic failure was the 

lowest among the various anions tested. While the threshold ppm level of bromide 

required to cause dendritic failure was the highest among the various anions tested. 

Succinate ions failed to cause any dendritic growth at 1000 ppm concentration.  

6.2 Future Work 

 Based on the power law, there's a chance the data acquired in this study can lead 

to the default or wrong lead because of the unknown variance that may affect the result in 

this study. In order to meaningfully apply this technique to real field conditions, more 

experiments need to be performed. It is suggested evaluating this test by applying several 

monolayers of water containing known concentrations of anions as well as evaluating 

mixtures of various anions, including other weak organic acids. Furthermore, more 

inorganic acid such as nitrate, fluoride and phosphate are also suggested evaluating. 
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 On the other hand, even though cleaning the "as received" boards eliminated the 

some of the contamination, the percentage of metals on the boards are still unknown. 

Thus, evaluating the percentage amount of tin, lead, and copper or any metals present on 

the test sample is beneficial to determine time to failure. Gold nanoparticles will be a 

powerful solution combining with cyclic voltametry (figure 48 and 49) technique to 

detect the concentration of metals such as tin, lead, copper, zinc on the as received boards 

so that time to failure results will be accurate with fewer variances. 

 Below is a picture of gold nanoparticles successfully created and characterized 

under TEM (Transmitted Electron Microscopy) equipment. 

 

Figure 48: Gold nanoparticles under TEM x 20 nm. 
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Figure 49: Potential vs. current density of Zn
2+

 in gold nanoparticles solution 

 Figure 49 shows the cyclic Voltametry system detects Zn
2+

 by identify the 

potential of Zn
2+

 which is +/-0.73. 
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Appendix A: Collected Data for Ion Chromatography  

 

 This is a cleaning process result for Bag Extraction in DI water. 

 

Bag Blank 

  

Anion ug/ml Total ug 

Fluoride 

 

0.00 

Chloride 0.024 0.72 

Bromide 

 

0.00 

Nitrite 

 

0.00 

Nitrate 0.04 1.20 

Sulfate 0.013 0.39 

Phosphate 0.006 0.18 

Acetate 0.052 1.56 

MSA 0.554 16.62 

Succinate 0.004 0.12 

Total WOA 0.61 18.30 

Total Inorganic 

anions 0.08 2.49 

TOTAL 0.69 20.79 

 

LE11_in 30ml DI 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.007 0.21 0.01 

Chloride 0.124 3.00 0.10 

Bromide 6.843 205.29 6.84 

Nitrite 0.002 0.06 0.00 

Nitrate 0.080 1.20 0.04 

Sulfate 0.047 1.02 0.03 

Phosphate 

 

-0.18 -0.01 

Acetate 0.123 2.13 0.07 

MSA 2.375 54.63 1.82 

Succinate 0.030 0.78 0.03 

Total WOA 2.53 57.54 1.92 

Total Inorganic 

anions 7.10 210.60 7.02 

TOTAL 9.63 268.14 8.94 
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Appendix A (continued) 

 

LE05_in 1/10 (30ml) 

 

   Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.002 0.06 0.02 

Chloride 0.029 0.15 0.05 

Bromide 0.152 4.56 1.52 

Nitrite 

 

0.00 0.00 

Nitrate 0.267 6.81 2.27 

Sulfate 0.140 3.81 1.27 

Phosphate 0.009 0.09 0.03 

Acetate 0.736 20.52 6.84 

MSA 1.269 21.45 7.15 

Succinate 0.001 -0.09 -0.03 

Total WOA 2.01 41.88 13.96 

Total Inorganic 

anions 0.60 15.48 5.16 

TOTAL 2.61 57.36 19.12 

 

 This is a cleaning process result for Bag Extraction in IPA 

 

Bag Blank 

  

Anion ug/ml Total ug 

Fluoride 0 0.00 

Chloride 0.043 1.29 

Bromide 0 0.00 

Nitrite 0 0.00 

Nitrate 0.244 7.32 

Sulfate 0.009 0.27 

Phosphate 0 0.00 

Acetate 0.118 3.54 

MSA 0.841 25.23 

Succinate 0.005 3 0.15 

4 Total WOA 5 0.96 6 28.92 

7 Total Inorganic 

anions 8 0.30 9 8.88 

10 TOTAL 11 1.26 12 37.80 
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Appendix A (continued) 

 

LE21_in 30ml IPA/DI 

 

   Anion ug/ml Total ug ug/in.sq. 

Fluoride 0 0.00 0.00 

Chloride 0.225 5.46 0.18 

Bromide 7.889 236.67 7.89 

Nitrite 0.000 0.00 0.00 

Nitrate 0.634 11.70 0.39 

Sulfate 0.030 0.63 0.02 

Phosphate 0.027 0.81 0.03 

Acetate 1.006 26.64 0.89 

MSA 3.952 93.33 3.11 

Succinate 0.030 0.75 0.03 

Total WOA 4.99 120.72 4.02 

Total Inorganic 

anions 8.81 255.27 8.51 

TOTAL 13.79 375.99 12.53 

 

LE07_in 30ml IPA/DI 

 

   Anion ug/ml Total ug ug/in.sq. 

Fluoride 0 0.00 0.00 

Chloride 0.302 7.77 0.26 

Bromide 1.887 56.61 1.89 

Nitrite 0.000 0.00 0.00 

Nitrate 2.125 56.43 1.88 

Sulfate 0.350 10.23 0.34 

Phosphate 0.000 0.00 0.00 

Acetate 12.720 378.06 12.60 

MSA 13.158 369.51 12.32 

Succinate 0.000 -0.15 -0.01 

Total WOA 25.88 747.42 24.91 

Total Inorganic 

anions 4.66 131.04 4.37 

TOTAL 30.54 878.46 29.28 
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Appendix A (continued)  

 

 This is the cleaning process result for C3 extraction in DI water. 

 

LE11_G 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.004 0.010 0.096 

Acetate 0.017 0.041 0.408 

MSA (or formate) 0.259 0.622 6.216 

Chloride 0.035 0.084 0.840 

Bromide 0.218 0.523 5.232 

Nitrite 0.002 0.005 0.048 

Nitrate 0.009 0.022 0.216 

Sulfate 0.082 0.197 1.968 

Phosphate 0.012 0.029 0.288 

Succinate 0.039 0.094 0.936 

Total WOA 0.315 0.756 7.560 

Total Inorganic anions 0.362 0.869 8.688 

TOTAL 0.677 1.625 16.248 

 

LE11_H 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.004 0.010 0.096 

Acetate 0.016 0.038 0.384 

MSA (or formate) 0.267 0.641 6.408 

Chloride 0.041 0.098 0.984 

Bromide 0.261 0.626 6.264 

Nitrite 0.001 0.002 0.024 

Nitrate 0.009 0.022 0.216 

Sulfate 0.096 0.230 2.304 

Phosphate 0.005 0.012 0.120 

Succinate 0.022 0.053 0.528 

Total WOA 0.305 0.732 7.320 

Total Inorganic 

anions 0.417 1.001 10.008 

TOTAL 0.722 1.733 17.328 
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Appendix A (continued) 

 

LE21_G 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.006 0.014 0.144 

Acetate 0.010 0.024 0.240 

MSA (or formate) 0.226 0.542 5.424 

Chloride 0.088 0.211 2.112 

Bromide 0.276 0.662 6.624 

Nitrite 0.002 0.005 0.048 

Nitrate 0.011 0.026 0.264 

Sulfate 0.087 0.209 2.088 

Phosphate 0.015 0.036 0.360 

Succinate 0.087 0.209 2.088 

Total WOA 0.323 0.775 7.752 

Total Inorganic anions 0.485 1.164 11.640 

TOTAL 0.808 1.939 19.392 

 

LE21_H 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.004 0.010 0.096 

Acetate 0.017 0.041 0.408 

MSA (or formate) 0.257 0.617 6.168 

Chloride 0.038 0.091 0.912 

Bromide 0.301 0.722 7.224 

Nitrite 0.002 0.005 0.048 

Nitrate 0.006 0.014 0.144 

Sulfate 0.109 0.262 2.616 

Phosphate 0.008 0.019 0.192 

Succinate 0.022 0.053 0.528 

Total WOA 0.296 0.710 7.104 

Total Inorganic 

anions 0.468 1.123 11.232 

TOTAL 0.764 1.834 18.336 
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Appendix A (continued) 

 

 This is the cleaning process result for C3 extraction in IPA. 

 

LE05_G 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.005 0.012 0.120 

Acetate 0.261 0.626 6.264 

MSA (or formate) 1.226 2.942 29.424 

Chloride 0.058 0.139 1.392 

Bromide 0.008 0.019 0.192 

Nitrite 0.002 0.005 0.048 

Nitrate 0.236 0.566 5.664 

Sulfate 0.231 0.554 5.544 

Phosphate 0.014 0.034 0.336 

Succinate 0.022 0.053 0.528 

Total WOA 1.509 3.622 36.216 

Total Inorganic anions 0.554 1.330 13.296 

TOTAL 2.063 4.951 49.512 

 

LE05_H 

   

Anion ug/ml Total ug 13 ug/in.sq. 

14 Fluoride 15 0.005 16 0.012 17 0.120 

18 Acetate 19 0.316 20 0.758 21 7.584 

22 MSA (or formate) 23 1.496 24 3.590 25 35.904 

26 Chloride 27 0.055 28 0.132 29 1.320 

30 Bromide 31 0.009 32 0.022 33 0.216 

34 Nitrite 35 0.003 36 0.007 37 0.072 

38 Nitrate 39 0.253 40 0.607 41 6.072 

42 Sulfate 43 0.290 44 0.696 45 6.960 

46 Phosphate 47 0.013 48 0.031 49 0.312 

50 Succinate 51 0.044 52 0.106 53 1.056 

54 Total WOA 55 1.856 56 4.454 57 44.544 

58 Total Inorganic 

anions 59 0.628 60 1.507 61 15.072 

62 TOTAL 63 2.484 64 5.962 65 59.616 
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Appendix A (continued) 

 

LE14_G 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.008 0.019 0.192 

Acetate 0.267 0.641 6.408 

MSA (or formate) 1.585 3.804 38.040 

Chloride 0.068 0.163 1.632 

Bromide 0.012 0.029 0.288 

Nitrite 0.002 0.005 0.048 

Nitrate 0.148 0.355 3.552 

Sulfate 0.281 0.674 6.744 

Phosphate 0.010 0.024 0.240 

Succinate 0.024 0.058 0.576 

Total WOA 1.876 4.502 45.024 

Total Inorganic anions 0.529 1.270 12.696 

TOTAL 2.405 5.772 57.720 

 

LE14_H 

   

Anion ug/ml Total ug ug/in.sq. 

Fluoride 0.007 0.017 0.168 

Acetate 0.276 0.662 6.624 

MSA (or formate) 2.017 4.841 48.408 

Chloride 0.077 0.185 1.848 

Bromide 0.008 0.019 0.192 

Nitrite 

 

0.000 0.000 

Nitrate 0.516 1.238 12.384 

Sulfate 0.364 0.874 8.736 

Phosphate 0.006 0.014 0.144 

Succinate 

 

0.000 0.000 

Total WOA 2.293 5.503 55.032 

Total Inorganic 

anions 0.978 2.347 23.472 

TOTAL 3.271 7.850 78.504 
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Appendix B: Collected Data for Conductivity Test  

 

 Below is the conductivity test result in DI Water. 

 

Concentration (ppm) Chloride Bromide Sulfate Succinate 

1 3.8 1.1 2.3 0.7 

4 16.2 7.0 12.7 5.9 

10 42.6 19.3 32.1 14.8 

50 223 99.1 163 87.4 

100 447 210 329 177.0 

1000 

  

2940 

 

 

 Below is the conductivity test result in IPA. 

 

Concentration 

(ppm) Chloride Bromide Sulfate Succinate 

1 0 0 0 N/A 

4 2.2 0 2.8 0 

10 7.3 2.6 4.6 2.0 

50 41.4 21.6 24.9 20.1 

100 85.2 46.8 51.3 40.2 
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Appendix C: Permission Release for Use of Result from Work at Jabil Inc. 
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